

TLP:WHITE

Malware Initial Findings Report (MIFR) - 10130295

2017-06-30

Notification

This report is provided "as is" for informational purposes only. Department of Homeland Security (DHS) does not provide any warranties of
any kind regarding any information contained within. The DHS does not endorse any commercial product or service referenced in this
bulletin or otherwise.

This document is marked Traffic Light Protocol (TLP):WHITE. Disclosure is not limited. Sources may use TLP:WHITE when information
carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release. Subject to standard
copyright rules, TLP:WHITE information may be distributed without restriction. For more information on TLP, see https://www.us-cert.gov/tlp.

Summary

Description

Submission included one unique file. This file is a dynamic-link library (DLL) designed to appear as ransomware, but which is, in effect, a
data wiper. During runtime, this application attempts to steal victim's credentials and use them to spread laterally on a compromised
network. The malware also utilizes the EternalBlue Server Message Block (SMB) exploit for lateral movement.

The malware encrypts the victim's files using a dynamically generated 128-bit key. The malware will encrypt the Master File Table (MFT) of
the victim's hard drive with a dynamically generated encryption key. The algorithm utilized for the MFT encryption has been identified as a
modified version of the Salsa20 cipher.

The malware generates and provides a unique ID to the victim. This ID could be used by the attacker to decrypt the victim's files if the
victim pays a ransom. However, there is no evidence of a relationship between this unique ID and the dynamically generated Salsa20
encryption key. Therefore, it does not appear possible for the attacker to decrypt the victim's files even if the ransom is paid.

Files

Processed 2

71b6a493388e7d0b40c83ce903bc6b04 (71b6.dll)
7e37ab34ecdcc3e77e24522ddfd4852d (e84b.tmp)

TLP:WHITE

US-CERT MIFR-10130295 1 of 6

https://www.us-cert.gov/tlp

Files

TLP:WHITE

71b6.dll

Details

Name

Size

Type

MD5

SHA1

ssdeep

Entropy

Antivirus

71b6.dll

362360

PE32 executable (DLL) (console) Intel 80386, for MS Windows

71b6a493388e7d0b40c83ce903bc6b04

34f917aaba5684fbe56d3c57d48ef2a1aa7cf06d

6144:y/Bt80VmNTBo/x95ZjAetGDN3VFNq7pC+9OqFoK30b3ni5rdQY/CdUOs2:y/X4NTS/x9jNG+w+9OqFoK323qdQYKUG

7.80193433518

McAfee

K7

Systweak

F-secure

Cyren

Symantec

VirusBlokAda

ClamAV

Kaspersky

BitDefender

Microsoft Security Essentials

Sophos

TrendMicro House Call

TrendMicro

Emsisoft

Avira

Ahnlab

ESET

NANOAV

Filseclab

Vir.IT eXplorer

Quick Heal

Ikarus

AVG

PE Information

RDN/Ransomware

Trojan (0001140e1)

trojan.ransom-petya

Trojan:W32/Petya.F

W32/Trojan.HEJY-4904

Ransom.Petya

TrojanRansom.Filecoder

Win.Exploit.CVE_2017_0147-6331310-0

Trojan-Ransom.Win32.ExPetr.a

Trojan.Ransom.GoldenEye.B

Ransom:Win32/Petya

Troj/Ransom-EOB

Ransom_.EA1AD694

Ransom_.EA1AD694

Trojan.Ransom.GoldenEye.B (B)

TR/Ransom.ME.12

Trojan/Win32.Petya

Win32/Diskcoder.C trojan

Trojan.Win32.Petya.eqlcgp

W32.Diskcoder.C.nmvl

Trojan.Win32.CryptoPetya.F

Ransom.Petya.A5

Trojan-Ransom.Petrwrap

SCGeneric2.BGFY

Compiled 2017-06-18T07:14:36Z

PE Sections

Name MD5 Raw Size Entropy

(header) 5d542908cdd140cab21a15c0430883f5 1024 2.62946685393

.text c5bd3bb710ae377938b17980692b785b 48640 6.54653060932

.rdata 46418e52b546c1f696eb8a524f18c56e 34304 6.99212929533

.data 5216f0c62d1fd41b1d558e129e18d0fe 20992 5.42698913823

.rsrc f07e68575f50a62382d99e182baa05d5 247808 7.9982879669

.reloc c5d1d4cdade7dcfbe14ec10dcf66cfb1 3584 4.77168126134

Description

This file is a variant of ransomware that spreads via two primary methods. It uses the EternalBlue SMB exploit, and it attempts to steal the
user’s credentials via the Windows protected storage area. The malware will then attempt to use the stolen credentials to gain access to
other systems on the local network. During runtime, the malware attains a file name within the user’s TEMP path using the APIs

TLP:WHITE

US-CERT MIFR-10130295 2 of 6

http:Ransom.Petya.A5
http:TR/Ransom.ME.12

TLP:WHITE
GetTempPathW and GetTempFileNameW.

Next, the malware will write an embedded resource, named “1,” to this file. The malware will execute this dropped module, and create a
named pipe to it in memory. Analysis indicates this dropped application is a modified version of the open-source tool known as “Mimikatz.”
The ransomware will execute this modified Mimikatz binary using a command line argument, which will allow the malware to control the
Mimikatz binary through a named pipe in virtual memory. The Mimikatz binary has been modified to prevent it from operating normally
through STDOUT via the command line. Mimikatz is a tool that can be used to attain username and password credentials from a Windows
system. In this case, it is likely the malware uses these stolen credentials to spread laterally on a network. However, this activity was not
directly observed within the lab environment.

During runtime, the malware begins enumerating network resources accessible by the user by using the WNetOpenEnumW and
WNetEnumResourceW Windows APIs. The malware will also search the protected storage area of the user’s profile looking for Terminal
Server credentials. Specifically, it uses the API CredEnumerateW to enumerate the credentials stored in the protected storage area looking
for a username that begins with the string “TERMSRV/.” If credentials are found, the malware attempts to establish a connection to this
Terminal Server using the API WNetAddConnection2. The malware attempts to login to the network resource using the Terminal Server
credentials it attained from the protected storage area. Specifically, the malware attempts to access the $admin share on this network
resource.

If a connection to the server is successfully established, the malware will copy itself to the C:\Windows folder of the newly compromised
server. The malware will attempt to run the newly installed copy of itself on that network resource, using the Windows Management
Instrumentation Command (WMIC) - line. It attempts to connect to the server using WMIC with the following command:

--Begin Command--

<%s /node:"%ws" /user:"%ws" /password:"%ws" >

--End Command--

The malware will then attempt to execute itself on the remote server using the following WMIC command:

--Begin Command--

process call create "C:\Windows\System32\rundll32.exe \ C:\Windows\%s\" #1

--End Command--

During runtime, the malware generates a new 128-bit Advanced Encryption Standard (AES) key and encrypts the user’s files with specific
file extensions. Additionally, the malware will back up and replace the master boot record (MBR) of the compromised system with an
application, written in assembly language that is approximately 8194 bytes in length.

The malware will back up the original MBR by XORing it with the value 0x7h. Then it will write it to the physical disk after the modified MBR
code. The backing up of the original MBR is presumably designed to allow the attacker to restore the machine to its original working state if
the ransom is paid.

In addition to the malware using WNetAddConnection2 and WMIC to spread itself on an internal network, it will also attempt to use the
EternalBlue exploit to spread itself onto other systems it has identified. During runtime, it will scan the local subnet from host 1 to host 255. It
will also attempt to find other subnets on the victim's network using the Win32API DhcpEnumSubnets.

The malware will also attempt to identify other hosts on the target network by checking victim system’s IP physical address-mapping table
using the Win32 API GetIpNetTable. The malware will then begin scanning all of the IPs to see if they are vulnerable to EternalBlue. After the
scan is complete, the malware will begin the EternalBlue attack against identified vulnerable systems.

The payload sent to the victim systems via the EternalBlue exploit is encoded in portions via a four-byte XOR key. The four-byte XOR keys
are as follows:

9EC8253D
3D9EC825
253D9EC8
C8253D9E

The following binary signatures may be utilized to detect this payload over port 445. They are simply the XOR keys themselves that will be
used to represent NULL padding in the payload, as a NULL XOR bite by itself equals NULL. These signatures may quickly let an
administrator know that this variant of ransomware is spreading across their internal network.
3D9EC8253D9EC8253D9EC8253D9EC825

253D9EC8253D9EC8253D9EC8253D9EC8

C8253D9EC8253D9EC8253D9EC8253D9E

TLP:WHITE

US-CERT MIFR-10130295 3 of 6

TLP:WHITE
9EC8253D9EC8253D9EC8253D9EC8253D

The individual victim’s files are encrypted by a 128-bit AES algorithm, generated during runtime. Immediately before rebooting the system, the
malware writes a file to the C:\drive named README.TXT. This file will contain a Bitcoin wallet and a hex encoded value. Static analysis
indicates this hard-coded value is the AES key generated by the malware during runtime, which is used to encrypt the user’s files. The
malware contains the following hard coded public RSA key, which the malware imports shortly before rebooting the victim system.

--Begin Public RSA Key--

525341310008000001000100273A8A2B54712C367E3ADEF28ECDD954004DE9C525ECAEA3790296003D726142F45DF4D39D96A7948
58870BE326604AF1352FF31
7DF1DF4AFE9907FDF300953F9FA6EC6CEBCEE137EB6E36D9A7C66C89F391ACD3A4799BDEA80E53042522D1DA99C3B00D13F2C1
0F7B09BE0AA64DA3199B48B842
E32C159CD7EE82E6DF2442BD3DC7A25524F467FABF5C9DE4F5381861D7CFBBCBC2521044AC44067EB5830DD0CA94D9D09C05C8
82F92A97A226B6991421B7CD8E
3A7DDD98EA20DE894AF450B8C0418271F00F956B460787FB57564499897DDACE3712177978D38940C8F8F0AB90EB0E3D6100D448
CA695DA9A53B1342C106C414
6A1526BDB7C834A7A8D5FFC4

--End Public RSA Key--

Several open-source reports indicate the malware encrypts the AES key generated during runtime, before writing it to the README.TXT file,
using the hard coded RSA public key. However, within our lab environment the malware did not secure the AES key with the RSA key.
Instead, the malware directly Base64 encoded and wrote the encoded value to the README.TXT file. Displayed below is the content of this
value, extracted from README.TXT. The header clearly indicates it is an AES 128-bit key blob.

Static analysis indicates the modified MBR code encrypts the master file table of the victim’s system after reboot. The algorithm utilized has
been tentatively identified a modified version of Salsa20 cipher. As the publically available source code for Salsa20 below indicates, the
cipher uses the constant string "expand 32-byte k" to initialize its key in the ENCRYPT_keysetup (ECRYPT_ctx *x,const u8 *k,u32 kbits,u32
ivbits) function.

This source code illustrates that bytes from this constant string are used within the actual encryption process. Specifically the static const
char sigma variable is assigned to the constants variable within the ENCRYPT_keysetup function. The 16 bytes of the key are then placed in
the first 16 bytes of the x-> input array. This array is then used within the ENCRYPT_ivsetup and ENCRYPT_encrypt_bytes functions.
Therefore changing the value of this constant string may modify the result of the Salsa20 cipher itself.

Static analysis indicates this string has been modified within the Salsa20 implementation this malware uses. This constant string has been
replaced with the 16-byte value “-1nvalid s3ct-id.” A screenshot of this modification is attached to this product. This modification may also be
designed to ensure identification of the Salso20 algorithm is more difficult.

The following hexadecimal value represents the op codes used to move this modified constant value into an array dereferenced off ESI. This
value may be used as a signature to identify this modified Salsa20 algorithm:

--Begin Algorithm--

C646EF31C646F06EC646F176C646F261C646F36CC646F564C646F620C646F773C646F833
C646F963C646FA74B02D8846EE8846FBB0698846F48846FCC646FD64

--End Algorithm--

This value is also present, unobfuscated, within the malware DLL itself. This hex value may be utilized to specifically identify this malware
variant.

Before rebooting, this malware generates a random 32-byte value using the API CryptGetRandom. This value will be used by the modified
MBR code as an encryption key to encrypt the MFT once the system is rebooted. This newly generated value (encryption key), the original
MBR (XOR encoded), and a dynamically generate 60 byte ID, are stored on the physical drive before the victim’s system is rebooted – along
with the ransomware’s own MBR application stored at offset zero of the physical drive. Displayed below is a portion of this data pulled directly
from the physical drive after the malware made the modifications to the physical drive:

Because this data is stored on the physical drive before the system is rebooted, the 32-byte random value will be available to encrypt the
MFT and the XOR encoded original MBR would presumably be available for the replacement MBR to decode and reinstall as the new MBR,
making the system bootable again to the user. This data is stored on the victim’s hard disk beginning at approximately sector 32. The
malicious MBR will be stored starting at offset zero.

It is important to note that there is no evidence of any correlation between the 32-byte encryption key generated and stored on the physical
drive, and the 60-byte unique ID presented to the user after the system reboots. This is because the 32-byte encryption key is generated via
the exact call to CryptGetRandom displayed in the screenshot below. This means that even if the 60-byte ID is given to the hacker, it would
be impossible for them duplicate this 32-byte encryption key.

TLP:WHITE

US-CERT MIFR-10130295 4 of 6

TLP:WHITE
After infecting the victim system and encrypting their files, the malware spends exactly one hour trying to break into other machines on the
local subnet. After one hour, the machine reboots, and the newly installed malware MBR application encrypts the MFT. This MFT code will
present an image to the user, directing them to send $300 to the Bitcoin wallet hardcoded in the malware (see screenshot). It is not
recommended for users to pay the ransom, because there is no way for the attacker to generate the 32-byte key used for MFT encryption
from the personal installation key presented to them.

e84b.tmp

Details

Name

Size

Type

MD5

SHA1

ssdeep

Entropy

Antivirus

e84b.tmp

56320

PE32+ executable (console) x86-64, for MS Windows

7e37ab34ecdcc3e77e24522ddfd4852d

38e2855e11e353cedf9a8a4f2f2747f1c5c07fcf

768:wglvV3eE6cYdk8TcqiAjpEhtFLIZJ92evTlvGTIRVIRYcwq22zDcENaiaX+kDt9J:3ihTaAjZNlGT5YcdYENvkA+ChJfSz

5.68074084361

McAfee

K7

F-secure

Cyren

Symantec

ClamAV

Kaspersky

BitDefender

Microsoft Security Essentials

Sophos

Emsisoft

Avira

Ahnlab

NANOAV

Ikarus

AVG

PE Information

Ransom-Petya

Trojan (00510da71)

Trojan:W32/Petya.H

W64/Trojan.MMAF-4376

Ransom.Petya

Win.Ransomware.Agent-6331177-0

Trojan-PSW.Win64.WinCred.a

Trojan.GenericKD.5502132

Trojan:Win64/Petya.B!rsm

Troj/Petya-BG

Trojan.GenericKD.5502132 (B)

TR/Mimipet.airfqbb

Trojan/Win64.Petya

Trojan.Win64.Petya.eqlcks

Trojan-Ransom.Petrwrap

SCGeneric2.BGME

Compiled 2017-06-06T13:32:49Z

PE Sections

Name MD5 Raw Size Entropy

(header) 752e1dc68a35ed927754e33b44dc39c6 1024 2.46098666312

.text 41c154154c3c592c37bb98a92e6ca5c5 33792 6.23735881579

.rdata 43150e3618628f745b83404e03a757a0 12800 4.63103564159

.data e81f0fbc70eef7673da7b05c1e5f2fcf 5632 2.21925552282

.pdata 5a7dd8c7eefd5343b5ac0b43ff90c07c 2048 3.9658470189

.reloc dd78f228d35f6857111389a37d55e371 1024 2.96092898223

Packers

Name Version Entry Point

Microsoft Visual C++ 8.0 (DLL) NA NA

Description

Analysis indicates this dropped application is a modified version of the open-source tool known as “Mimikatz.” The ransomware will execute
this modified Mimikatz binary using a command line argument, which will allow the malware to control the Mimikatz binary through a named
pipe in virtual memory. The Mimikatz binary has been modified to prevent it from operating normally through STDOUT via the command line.
Mimikatz is a tool that can be used to attain user’s username and password credentials from a Windows system. In this case, it is likely the
malware using these stolen credentials to spread laterally on a network. However, we did not directly observe this activity within our lab

TLP:WHITE

US-CERT MIFR-10130295 5 of 6

TLP:WHITE
environment.

Mitigation Recommendations

US-CERT reminds users and administrators of the following best practices to strengthen the security posture of their
organization's systems:

Maintain up-to-date antivirus signatures and engines.

Restrict users' ability (permissions) to install and run unwanted software applications.

Enforce a strong password policy and implement regular password changes.

Exercise caution when opening e-mail attachments even if the attachment is expected and the sender appears to be known.

Keep operating system patches up-to-date.

Enable a personal firewall on agency workstations.

Disable unnecessary services on agency workstations and servers.

Scan for and remove suspicious e-mail attachments; ensure the scanned attachment is its "true file type" (i.e., the extension matches the

file header).

Monitor users' web browsing habits; restrict access to sites with unfavorable content.

Exercise caution when using removable media (e.g., USB thumb drives, external drives, CDs, etc.).

Scan all software downloaded from the Internet before executing.

Maintain situational awareness of the latest threats; implement appropriate ACLs.

Contact Information

1-888-282-0870

soc@us-cert.gov (UNCLASS)

us-cert@dhs.sgov.gov (SIPRNET)

us-cert@dhs.ic.gov (JWICS)

US-CERT continuously strives to improve its products and services. You can help by answering a series of short questions about this
product at the following URL: https://forms.us-cert.gov/ncsd-feedback/

Document FAQ

What is a Malware Initial Findings Report (MIFR)? A MIFR is intended to provide organizations with malware analysis in a timely manner.

In most instances, this report will provide initial indicators for computer and network defense. To request additional analysis, please contact

US-CERT and provide information regarding the level of desired analysis.

Can I edit this document? This document is not to be edited in any way by recipients. All comments or questions related to this document

should be directed to the US-CERT Security Operations Center at 1-888-282-0870 or soc@us-cert.gov.

Can I submit malware to US-CERT? Malware samples can be submitted via three methods. Contact us with any questions.

Web: https://malware.us-cert.gov

E-Mail: submit@malware.us-cert.gov

FTP: ftp.malware.us-cert.gov/malware (anonymous)

US-CERT encourages you to report any suspicious activity, including cybersecurity incidents, possible malicious code, software
vulnerabilities, and phishing-related scams. Reporting forms can be found on US-CERT's homepage at www.us-cert.gov.

TLP:WHITE

US-CERT MIFR-10130295 6 of 6

http:www.us-cert.gov
ftp.malware.us-cert.gov/malware
mailto:submit@malware.us-cert.gov
http:https://malware.us-cert.gov
mailto:soc@us-cert.gov
https://forms.us-cert.gov/ncsd-feedback
mailto:us-cert@dhs.ic.gov
mailto:us-cert@dhs.sgov.gov
mailto:soc@us-cert.gov

