

WMI for Detection and Response

August 2016

This product is provided subject only to the linked Notification Section.

http://www.us-cert.gov/privacy/

 iii

SUMMARY
This document provides an introduction to and guidance on methods

available for mitigating the adversarial use of Windows Management
Instrumentation (WMI).

 iv

 v

CONTENTS

SUMMARY ... iii

ACRONYMS .. vii

1. INTRODUCTION .. 1
1.1 High-Level WMI Architecture ... 1
1.2 Remote WMI.. 2

2. Querying WMI ... 2

3. Attacker WMI Detection .. 3
3.1 Existing Detection Utilities .. 3

3.1.1 Sysinternals Autoruns ... 3
3.1.2 Kansa ... 4

4. Defensive WMI Eventing ... 5
4.1 The Two Classes of WMI Events .. 5
4.2 Three Important Parts of a WMI Event .. 6
4.3 Event Filters ... 6
4.4 Event Consumers ... 6
4.5 Filter to Consumer Binding .. 7

5. Event Types .. 8
5.1 Intrinsic Events .. 8
5.2 Extrinsic Events ... 9

6. Using WMI CLI commands for Detection and Removal of malicious wmi 10
6.1 Manual Detection: WMI Command Line Tool .. 10
6.2 Manual Removal: WMI Command Line Tool ... 10
6.3 WMI Intrusion Detection Using PowerShell Code Ex .. 10
6.4 Event Logs ... 11

7. Additional WMI Mitigation ... 11
7.1 WMI Backup & Restore .. 11
7.2 WMI Access Control ... 13

Appendix A ... 14

 vi

FIGURES
Figure 1: WMI Architecture Diagram. ... 1

Figure 2: Sysinternals Autoruns screenshot with startup items. ... 4

Figure 3: Event Filters shown with wmimgmt.msc. ... 6

Figure 4: Event consumer Listing. .. 7

Figure 5: Showing how Filters and Consumers interact with one another by using a
FilterToConsumerBinding to tie them together. .. 8

Figure 6: How to start wmimgmt tool. ... 12

Figure 7: wmimgmt.msc main menu. ... 12

Figure 8: wmimgmt backup/restore window. ... 12

Figure 9: Accessing Root directory to apply access control (security) settings. 13

Figure 10: Screenshot of Security for Root. ... 13

Figure A-1: After selecting namespace, class, and method, a script is generated that can
be further modified. Users then need only supply desired value(s) for script, as
required. ... 14

Figure A-2: Powershell prompt and list of popular WMI cmdlets. .. 15

Figure A-3: Administrators and malicious attackers can use the Wmic.exe terminal to
execute WMI methods. .. 16

Figure A-4: Wbemtest.exe dashboard once connected. .. 17

Figure A-5: Contents of root\CIMV2 directory and WMI Explorer generated WQL
language to select all contents from Win32_Processor object....................................... 17

Figure A-6: Exploring 5 levels into the root\CIMV2 directory and displaying the contents
of selected object.. 18

 vii

ACRONYMS

CLI command line interface

IDS intrusion detection system

VM virtual machine

WMI Windows Management Instrumentation

WQL WMI Query Language

 viii

 1

WMI for Detection and Response
1. INTRODUCTION

Windows Management Instrumentation (WMI) is composed of a powerful set of
tools used to manage Windows systems both locally and remotely. While it has been
well known and used heavily by system administrators since its inception, WMI has
been gaining popularity amongst attackers for its ability to perform system
reconnaissance, antivirus and virtual machine (VM) detection, code execution, lateral
movement, persistence, and data theft.

This whitepaper will present an introduction to WMI, actual and proof-of-concept
attacks using WMI, how WMI can be used as a rudimentary intrusion detection
system (IDS), how to defend against adversarial use of WMI, and present how to
perform forensics on the WMI repository file format.

1.1 High-Level WMI Architecture
WMI represents most data related to operating system information and actions in

the form of objects. An object is a member of a class, a class is a member of a
namespace, and all namespaces derive from the “Root” namespace. This paper will
later show examples of how to list, find, and use namespaces, classes, and objects
through multiple tools and methods such as PowerShell, WQL (WMI Query
Language), WMI Code Creator and others. See Figure 1.

WMI classes can be found on the Microsoft MSDN site.

Figure 1: WMI Architecture Diagram.

https://msdn.microsoft.com/en-us/library/aa394554(v=vs.85).aspx

 2

1.2 Remote WMI
The real threat and power of WMI is realized when used over the network.

Currently, two protocols exist that enable remote object queries, event
registration, WMI class method execution, and class creation:

• DCOM TCP Port 135

• WinRM TCP Ports 5985 (HTTP) and 5986 (HTTPS).

These protocols are viewed as advantageous to an attacker because most
organizations and vendors generally don’t inspect the content of this traffic for signs
of malicious activity.

All that an attacker needs to leverage remote WMI is valid, privileged user
credentials. In the case of the Linux wmis-pth utility, all that is needed is the hash of
the victim user.

2. QUERYING WMI
WMI provides a straightforward syntax for querying WMI object instances,

classes, and namespacesWindows Query Language (WQL). From a defensive
perspective, it is vital to understand and be able to adequately use queries. Queries are
used regularly for malicious purposes and should be used for defensive purposes.
These queries can do everything from attacker reconnaissance to intrusion detection.
The three categories of WQL queries are as follows:

1. Instance queries

a. Are used to query WMI class instances.
b. Primarily are used by attackers for conducting reconnaissance and gathering

information about a targeted system.

2. Event queries

a. Are used as a WMI event registration mechanism, e.g., WMI object creation,
deletion, or modification.

b. Will be one area of focus later in the paper when discussing WMI defense and
mitigation.

 3

3. Meta queries

a. Are used to query WMI class schemas.

Format:

The following query lists all WMI classes that start with the string “Win32.”

Example:

NOTE: When performing any WMI query, the default namespace ROOT\CIMV2 is
implied unless explicitly provided.

3. ATTACKER WMI DETECTION

3.1 Existing Detection Utilities
In addition to using WMI events to alert users to possible attacks, detection

utilities are also available.

3.1.1 Sysinternals Autoruns
Autoruns is a free utility that unveils every startup item on a Windows-based PC.

All images are stored in the startup folders, the Registry, and other areas.

Autoruns shows the name and location of each image. For files, it displays the
directory path; for Registry entries, it provides the exact key. Autoruns also supplies
the name of the publisher and a brief description based on the item’s version data.
Double-clicking on an entry guides the user to its directory or Registry key; right-
clicking opens a popup menu with more options, including a Properties command that
displays the standard File Properties window with full version information.

 4

Users can check on the digital signature of an entry through the Verify command,
which queries web sites with certificate revocation lists (CRLs) to determine if an
image is digitally signed and whether the signature is valid.

Another option to “Hide Signed Microsoft Entries” excludes entries already
signed by Microsoft, allowing the user to focus on third-party images.

Figure 2: Sysinternals Autoruns screenshot with startup items.

Startup Item

3.1.2 Kansa
Kansa is modular. It features a core script, dozens of collector modules, and

analysis scripts to help make sense of the data collected. Kansa takes advantage of
Windows Remote Management and PowerShell remoting by using PowerShell’s
default nondelegated Kerberos network logons, not CredSSP and, therefore, does not
expose credentials to harvesting.

Kansa is a great tool with many uses but particularly useful are its Get-Autorunsc,
Get-WMIEvtConsumer, Get-WMIEvtFilter, and Get-WMIFltConBind PowerShell
scripts.

1. Get-Autorunsc
- A great utility for gathering data from many known ASEP (Auto Start

Extension Point) locations, including the path to the executable or script,
command line arguments, and cryptographic hashes such as MD5.

2. Get-WMIEvt(Consumer/Filter)/Get-WMIFltConBind

 5

- Collects data about WMI Event Consumers/Filters/Consumer – Filter
Binding.

- Kansa provides modules that can query and return information that an admin
would need to detect WMI persistence.

- A walk-through on setting up Kansa and an in-depth explanation of its many
utilities and capabilities can be found at the powershellmagazine site.

The downside to these tools is that they only detect WMI persistence artifacts at a
certain snapshot in time. This means that tools like Sys Internals Autoruns and Kansa
won’t detect persistence from clever attackers who clean up their code once they’ve
performed their actions. The solution to this problem is to use WMI eventing.

4. DEFENSIVE WMI EVENTING
The eventing subsystem present in WMI could be thought of as the free

host-based IDS from Microsoft.

Because almost all operating system actions fire a WMI event, such as Instance,
Class, Namespace, and Registry Creation and Modification events, WMI is well
positioned to catch and alert admins of attacker actions as they occur.

Administrators can choose how to receive alerts on events they have created. One
popular method is to have a user send an email or an alert popup to notify the admin
when an event fires.

One of the most powerful features of WMI from an attacker’s or defender’s
perspective is the WMI event, which can be used to respond to nearly any operating
system event.

• For example, a WMI event may be used to trigger an event upon process creation.
This could then be used as a means to perform command-line auditing on any
Windows OS.

4.1 The Two Classes of WMI Events
1. Events that run locally in the context of a single process.

- Local events last for the lifetime of the host process.

2. Permanent WMI event subscriptions.
- Permanent WMI events are stored in the WMI repository, run as SYSTEM,

and persist across reboots.

http://www.powershellmagazine.com/2014/07/18/kansa-a-powershell-based-incident-response-framework/

 6

4.2 Three Important Parts of a WMI Event
In order to install a permanent WMI event subscription, three things are required:

1. An event filterThe event of interest,

2. An event consumerAn action to perform upon triggering an event, and

3. A filter to consumer bindingThe registration mechanism that binds a filter to a
consumer.

4.3 Event Filters
Once a filter has been configured, it can be used to receive alerts when new events

are created.

Event filters are stored in an instance of ROOT\Subscription: __EventFilter object

As an example, event filters might be used to describe some of the following
events:

• Creation of a process with a certain name;

• Loading of a DLL into a process,

• Creation of an event log with a specific ID;

• Insertion of removable media;

• User logoff; and

• Creation, modification, or deletion of any file or directory.

Figure 3: Event Filters shown with wmimgmt.msc.

4.4 Event Consumers
An event consumer is a class that is derived from the __EventConsumer system

class that represents the action to take on firing an event.

The following useful standard event consumer classes:

• LogFileEventConsumerWrites event data to a specified log file.

• ActiveScriptEventConsumerExecutes an embedded VBScript of JScript script
payload.

 7

• NTEventLogEventConsumerCreates an event log entry containing the event
data.

• SMTPEventConsumerSends an email containing the event data.

• CommandLineEventConsumerExecutes a command-line program.

Figure 4: Event consumer Listing.

Attackers make heavy use of the ActiveScriptEventConsumer and
CommandLineEventConsumer classes when responding to their events.

Both event consumers offer a tremendous amount of flexibility for attackers to
execute any payload they wantall without needing to drop a single malicious
executable or script to disk.

4.5 Filter to Consumer Binding
Once an event filter and an event consumer have been created, the only thing left

to do is to bind them together so the consumer knows off of which filter to base itself.

This class instance associates the __EventFilter instance with the
__EventConsumer instance. It completes the cycle by relating the class instances with
each other. It answers the question, “With what Windows event (__EventFilter) will I
execute my script program (__EventConsumer)?”

__FilterToConsumerBinding is used in registering permanent event consumers to
relate the __EventConsumer instance to the __EventFilter instance.

 8

Figure 5: Showing how Filters and Consumers interact with one another by using a
FilterToConsumerBinding to tie them together.

For more WMI Event examples, prewritten scripts or a deeper delve into WMI;
MSDN and Microsoft TechNet are two great resources. Here are a few links with
which to start:

• Enhanced WMI Monitoring Scripts

• Monitoring Resources by Using WMI Event Notifications

• How WMI Event Notification Works

• WMI Script Repository

5. EVENT TYPES

5.1 Intrinsic Events
Intrinsic events are events that use polling and fire upon the creation,

modification, and deletion of any WMI class, object, or namespace. They can also be
used to alert to the firing of timers or the execution of WMI methods. The following
intrinsic events take the form of system classes (those that start with two underscores)
and are present in every WMI namespace:

• __NamespaceOperationEvent,

• __NamespaceModificationEvent,

• __NamespaceDeletionEvent,

• __NamespaceCreationEvent,

• __ClassOperationEvent

• __ClassDeletionEvent,

• __ClassModificationEvent,

• __ClassCreationEvent,

• __InstanceOperationEvent,

• __InstanceCreationEvent,

https://technet.microsoft.com/en-us/library/ee156569.aspx
https://technet.microsoft.com/en-us/library/ee198937.aspx
https://technet.microsoft.com/en-us/library/ee156572.aspx
https://gallery.technet.microsoft.com/scriptcenter/site/search?f%5B0%5D.Type=Tag&f%5B0%5D.Value=WMI

 9

• __MethodInvocationEvent,

• __InstanceModificationEvent,

• __InstanceDeletionEvent, and

• __TimerEvent.

These events are extremely powerful, because they can be used as triggers for
nearly any conceivable event in the operating system.

Because of the rate at which intrinsic events can fire, a polling interval must be
specified in queries specified with the WQL WITHIN clause.

Because of the polling interval, it is possible on occasion to miss events. For
example, if an event query is formed targeting the creation of a WMI class instance
and if that instance is created and destroyed within the polling interval, that event
would be missed.

The following query is translated to firing on the creation of an instance of a
Win32_LogonSession class with a logon type of 2 (Interactive).

5.2 Extrinsic Events
Extrinsic events solve the potential polling issues related to intrinsic events

because they fire immediately on an event occurring.

• The downside is not many extrinsic events are present in WMI.

• The events that do exist are extremely powerful but the following extrinsic events
may also be of value to an attacker or defender:

- ROOT\CIMV2:Win32_ComputerShutdownEvent
- ROOT\CIMV2:Win32_IP4RouteTableEvent
- ROOT\CIMV2:Win32_ProcessStartTrace
- ROOT\CIMV2:Win32_ModuleLoadTrace
- ROOT\CIMV2:Win32_ThreadStartTrace
- ROOT\CIMV2:Win32_VolumeChangeEvent
- ROOT\CIMV2:Msft_WmiProvider*
- ROOT\DEFAULT:RegistryKeyChangeEvent
- ROOT\DEFAULT:RegistryValueChangeEvent.

This query would capture all executable modules loaded into every process:

 10

6. USING WMI CLI COMMANDS FOR DETECTION AND
REMOVAL OF MALICIOUS WMI

6.1 Manual Detection: WMI Command Line Tool
To manually detect instances of the threat in a system, the following commands

can be used with the Command line tool:

• wmic/namespace:\\root\subscription PATH __EventConsumer get/format:list

• wmic/namespace:\\root\subscription PATH __EventFilter get/format:list

• wmic/namespace:\\root\subscription PATH __FilterToConsumerBinding get/
format:list

• wmic/namespace:\\root\subscription PATH __TimerInstruction get/format:list.

6.2 Manual Removal: WMI Command Line Tool
To manually remove instances of the threat in a system, the following commands

can be used with the Command line tool:

• wmic/namespace:\\root\subscription PATH__EventConsumer delete

• wmic/namespace:\\root\subscription PATH__EventFilter delete

• wmic/namespace:\\root\subscription PATH__FilterToConsumerBinding delete
• wmic/namespace:\\root\subscription PATH__TimerInstruction delete

6.3 WMI Intrusion Detection Using PowerShell Code Ex
The six examples following show how PowerShell syntax can be used for WMI

detection:

Below are three examples of how one could use PowerShell to alert on either

EventConsumers, RegistryKey’s or StartupCommands.

 11

6.4 Event Logs
WMI, DCom and WinRM events to the following event logs:

• Microsoft-Windows-WinRM/Operational

- Shows failed WinRM connection attempts including the originating IP
address

• Microsoft-Windows-WMIActivity/Operational

- Contains failed WMI queries and method invocations that may contain
evidence of attacker activity

• Microsoft-Windows-DistributedCOM.

- Shows failed DCOM connection attempts including the originating IP address.

Many Network level IDS and IPS’s can incorporate logs from WMI events stored
in the above locations and be configured to perform an action such as marking action
for review on dashboard, emailing administrator, preventing an action from
performing (ex: file being executed), and more depending on the system.

7. ADDITIONAL WMI MITIGATION

7.1 WMI Backup & Restore
Having a WMI baseline for the computer systems within an organization is a

great first step in understanding and being able to identify malicious WMI activity
and mitigate it.

Wmimgmt.msc as well as the tools listed previously in this paper can all be used
to explore the namespaces and associated classes and objects with ease. However,
with dozens of namespaces and thousands of classes, it may not be feasible to
manually gain a close familiarity with WMI and a baseline thereof.

 12

Figure 6: How to start wmimgmt tool.

NOTE: Click more actions or right click on WMI Control (Local) -> actions ->
properties to access the WMI Control (Local) Properties window.

Figure 7: wmimgmt.msc main menu.

An alternative to familiarization and baselining WMI is to back up the WMI
repository once an organization has configured the system. Having a backup of the
WMI repository allows users the option to restore from the backup file when users
uncover evidence of malicious WMI activity or suspect potential malicious WMI
activity from attackers (see Figure 8).

Figure 8: wmimgmt backup/restore window.

 13

7.2 WMI Access Control
The security tab is located in the same properties window as the Backup/Restore

tab. The security tab allows the user to configure user permissions for WMI
Repository interaction.

Figure 9: Accessing Root directory to apply access control (security) settings.

Organizations can set the controls to match its preferences. For example,
permissions can be set for the entire root directory or for specific namespaces like
CIMV2.

Another option is to have a separate account specifically for WMI management
with a unique set of credentials. While some would argue that simple techniques,
such as hash dumping, render this defensive method irrelevant from a defense-in-
depth perspective, granular access control is applicable to WMI management.

Figure 10: Screenshot of Security for Root.

 14

Appendix A

WMI Interaction and Tools
A1. WMI CODE CREATOR

WMI Code Creator is a popular free tool made available by Microsoft.

The WMI Script interface allows for easy browsing of namespaces and classes that are all
listed in the drop down menus. In addition, Code Creator will generate code based on what
options have been selected. It lets the user choose which language to write the code: VB,
VB Script, or C#.

WMI Code Creator will generate code for WMI queries, method execution, and setting up
WMI events, which as discussed later in this paper is the most proactive defense available for
mitigating WMI attacks.

Figure A-1: After selecting namespace, class, and method, a script is generated that can be further
modified. Users then need only supply desired value(s) for script, as required.

 15

Here are links with a great introduction to Code Creator and a walkthrough for performing
queries, executing methods, and returning events with WMI Code Creator:

A1.1 PowerShell
PowerShell is becoming more popular and more widely used for a variety of reasons. One

reason in particular PowerShell has become a popular method of interacting with WMI is the
existence of WMI cmdlets (see Figure A-2).

Figure A-2: Powershell prompt and list of popular WMI cmdlets.

Following is an example of PowerShell code that detects WMI persistence on the specified
remote system. It shows just how easy it is to use PowerShell to interact with WMI.

• Get-WmiObject
• Get-CimAssociatedInstance
• Get-CimClass
• Get-CimInstance
• Get-CimSession
• Set-WmiInstance
• Set-CimInstance
• Invoke-WmiMethod
• Invoke-CimMethod
• New-CimInstance
• New-CimSession
• New-CimSessionOption
• Register-CimIndicationEvent
• Register-WmiEvent
• Remove-CimInstance
• Remove-WmiObject
• Remove-CimSession

http://hintdesk.com/introduction-to-wmi-code-creator/
https://blogs.technet.microsoft.com/askperf/2010/02/01/two-minute-drill-wmi-code-creator/
https://blogs.technet.microsoft.com/askperf/2010/02/01/two-minute-drill-wmi-code-creator/

 16

Prewritten WMI PowerShell scripts and walkthroughs are available on the Web. An
introduction to using PowerShell for permanent event and temporary event subscriptions can be
found at the learn-pwershell.net site.

A1.2 Wmic.exe
Wmic.exe is a powerful command line utility for interacting with WMI. It has a large amount

of default aliases for WMI objects, and users can perform more complicated queries.

Wmic.exe can execute WMI methods, and attackers can use it to perform lateral movement
by using the Win32_ProcessCreate method.

Figure A-3: Administrators and malicious attackers can use the Wmic.exe terminal to execute WMI
methods.

In circumstances where PowerShell is not available, Wmic.exe is a sufficient alternative for
performing reconnaissance and basic method invocation.

A1.3 Wbemtest.exe
Wbemtest.exe is a powerful GUI WMI diagnostic tool. It isn’t pretty, but it sure is useful. It

allows you to explore deep into the WMI repository to discover what an administrator might be
able to harness in PowerShell scripts. It is able to enumerate object instances, class names, get
properties and methods, get property datatypes, perform queries, register events, modify WMI
objects and classes, and invoke methods both locally and remotely.

https://learn-powershell.net/2013/08/14/powershell-and-events-permanent-wmi-event-subscriptions/
https://learn-powershell.net/2013/08/02/powershell-and-events-wmi-temporary-event-subscriptions/

 17

Figure A-4: Wbemtest.exe dashboard once connected.

Namespace Exploration,
Query options and Method

A1.4 WMI Explorer
WMI Explorer is a great WMI class discovery tool. It has a polished GUI that allows the user to
explore the WMI repository in a hierarchical fashion. It is also able to connect to remote WMI
repositories and perform queries.

Figure A-5: Contents of root\CIMV2 directory and WMI Explorer generated WQL language to select all
contents from Win32_Processor object.

 18

A1.5 CIM Studio
CIM Studio is a free, legacy tool from Microsoft that allows the user to easily browse the

WMI repository. Like WMI Explorer, this tool is good for WMI class discovery.

Figure A-6: Exploring 5 levels into the root\CIMV2 directory and displaying the contents of selected
object.

	1. INTRODUCTION
	1.1 High-Level WMI Architecture
	1.2 Remote WMI

	2. QUERYING WMI
	3. ATTACKER WMI DETECTION
	3.1 Existing Detection Utilities
	3.1.1 Sysinternals Autoruns
	3.1.2 Kansa

	4. DEFENSIVE WMI EVENTING
	4.1 The Two Classes of WMI Events
	4.2 Three Important Parts of a WMI Event
	4.3 Event Filters
	4.4 Event Consumers
	4.5 Filter to Consumer Binding

	5. EVENT TYPES
	5.1 Intrinsic Events
	5.2 Extrinsic Events

	6. USING WMI CLI COMMANDS FOR DETECTION AND REMOVAL OF MALICIOUS WMI
	6.1 Manual Detection: WMI Command Line Tool
	6.2 Manual Removal: WMI Command Line Tool
	6.3 WMI Intrusion Detection Using PowerShell Code Ex
	6.4 Event Logs

	7. ADDITIONAL WMI MITIGATION
	7.1 WMI Backup & Restore
	7.2 WMI Access Control

