

MALWARE ANALYSIS REPORT
MAR-17-352-01 HATMAN—SAFETY SYSTEM
TARGETED MALWARE
December 18, 2017

SUMMARY

The HatMan malware affects Triconex controllers by modifying in-memory firmware to add
additional programming. The extra functionality allows an attacker to read/modify memory
contents and execute custom code on demand through receiving specially crafted network
packets. HatMan consists of two pieces: a PC-based component to communicate with the safety
controller and a malicious binary component that is downloaded to the controller. Safety
controllers are used in a large number of environments, and the capacity to disable, inhibit, or
modify the ability of a process to fail safely can potentially result in physical consequences. This
report discusses the components and capabilities of the malware and some potential mitigations.
Media reporting also refers to this malware as both TRITON and TRISIS.

A NOTE ON THE ANALYSIS

This report will discuss the malware as though it is entirely functional. We are aware that the
malware may currently have bugs—due to descriptions of how it is behaving—that prevent it
from effecting its desired changes. Though this report presents a “worst case scenario,” it should
be considered accurate. We have no reason to suspect that the malware’s creators have not fixed
its bugs, or that a functional copy does not exist somewhere that we have not yet seen. We have
and will continue to work with Schneider Electric—the manufacturer of the targeted safety
controller—to test our hypotheses and the malware, and we will update the report when we can
confirm any additional information.

ICS-CERT MAR-17-352-01 Page 1 of 12

ANALYSIS

HatMan follows Stuxnet and Industroyer/CrashOverride, but surpasses them with the ability to
directly interact with, remotely control, and compromise a safety system—a nearly
unprecedented feat. This report will discuss the malware’s context, components, and capabilities.

CONTEXT: WHAT ARE SAFETY SYSTEMS?

Safety systems or PLCs are specialized hardware—similar to traditional PLCs—with a strong
emphasis on reliability and predictable failure.1 Unlike PLCs, safety PLCs often have redundant
components, such as multiple main processors; watchdog capabilities to self-diagnose anomalies;
and robust failure detection on inputs and outputs. They are normally used to provide a way for a
process to safely shut down when it has encountered unsafe operating conditions, and provide a
high degree of safety and reliability with important monitoring capabilities for process engineers.

COMPONENTS

HatMan consists of two parts: a more traditional PC-based component that interacts with the
safety PLCs, and a binary component that compromises the end device when downloaded. All of
these could potentially appear within the safety system environment, possibly in similar file
system locations as TriStation TS1131 software installations.

The PC-based component consists of three pieces in the form observed:

• An executable that programs a Triconex device without the TriStation software,

• A native2 shellcode program that injects a payload into the in-memory copy of the
Triconex firmware,3 and

• A native shellcode payload that performs malicious actions.

1 Safety systems are designed such that if they were to fail, they would fail in an entirely predictable manner, so that
the worst case scenario is fully known.

2 The shellcode here is PowerPC, where newer Triconex devices (if targeted in other versions), would be ARM.

3 The persistent copy of the firmware is immutable, as it is stored in PROM.

ICS-CERT MAR-17-352-01 Page 2 of 12

REPROGRAMMING THE SAFETY PLC
In its current iteration, the component that programs the Triconex controllers is written entirely
in Python.4 The modules that implement the communication protocol and other supporting
components are found in a separate file—library.zip—while the main script that employs this
functionality is compiled into a standalone Windows executable—trilog.exe—that includes a
Python environment.

This Python script communicates using four Python modules—TsBase, TsLow, TsHi,
and TS_cnames—that collectively implement the TriStation network protocol (“TS”, via UDP
1502); this is the protocol that the TriStation TS1131 software uses to communicate with
Triconex safety PLCs. Although this protocol is undocumented, it is similar to the officially
documented, user application Triconex System Access Application (TSAA) protocol,5 and could
feasibly have been reverse engineered from knowing this, other manufacturers’ documentation,
and watching traffic between the programming workstation and safety PLC. In addition, this
protocol does not require any authentication or encryption, although ACLs may be configured on
the PLC.6 The Python script is also capable of autodetecting Triconex controllers on the network
by sending a specific UDP broadcast packet over Port 1502.

In addition to their implementation of the TriStation protocol, the Python modules also expose a
set of methods to interact with the compromised safety PLC. These use a specific network
command with some specially crafted data to pass messages to the implant in order to expose the
functionality of the malicious modifications to an attacker on a computer on the safety network,
regardless of key switch position.

The general execution flow of the Python script can be seen in the flow diagram below. It begins
with connecting to a Triconex controller using an IP address provided as an argument. Once it
has connected, it sets an argument for itself by appending a small program, running it, and then
checking to ensure it succeeded. It then overwrites the program with a small dummy program if

4 However, it would be relatively trivial to rewrite this component into any other language.

5 The TSAA protocol can be used for reading and writing data points and other user-application-level tasks from a
third-party program, rather than using Schneider software.

6 That being said, ACLs are not an effective mitigation strategy, as it is solely based on IP address; thus, the attacker
could still use the programming workstation to compromise the PLC. In addition, later Triconex devices have X.509
signing for programming—this is also not a bulletproof mitigation strategy, as it is very feasible for the authors to
update their script to employ these certificates (resident on the programming workstation) to sign any updates they
push, circumventing the measure. At best, this would be a stop-gap.

ICS-CERT MAR-17-352-01 Page 3 of 12

.-~ ,
/

Trilog.exe
\ ',,

Download malicious
program l u device

I

\
/

CnrrnP.r.t to t hP.
T rico nex device at

thp providP.d IP

Con~lr uel rm, liciou,
program to
download

'>Pl ~,gumP.nt by
downloading

prog-.~m

Overwrite with
e mplv program

,_---------1~0

Over wr ile w ilh

P. n, otv prngr illl')

-~
/

End
,,

'

No---------t

,,
\

I

I ,,,

its “clean” flag is set. Following this, it builds the malicious payload and overwrites the same
program slot with this new code. Then it runs the malicious payload, waits for it to finish, and
verifies it succeeded. Finally, it overwrites the malicious program with the same dummy program
if the same “clean” flag is set.

The script embedded in the PC component does not interact with the command modified by the
malicious payload, but it is feasible and likely that a separate script was used to actually interact
with the compromised safety controller as needed.

THE MALICIOUS PAYLOAD
The malicious shellcode is split into two separate pieces—inject.bin and imain.bin. The
former is more generic code that handles injecting the payload into the running firmware, while
the latter is the payload that actually performs the additional, malicious functionality. Both
binary components are PowerPC bytecode—the same as the firmware and any applications
compiled for and downloaded to the safety controller.

The injector masquerades as a normal, compiled PowerPC program for the Triconex device. It
uses the argument value written by the first program downloaded by the Python script (described
previously); however, unlike the earlier program that heuristically determines a location for the
argument, it assumes that this value exists at a particular address. This address is within the
structure handed back from the TS protocol “get control program status” command. As the
injector runs, it uses this control field several ways: as an input argument that specifies the
number of cycles to idle before attempting to inject the payload; as a step counter to track and
control execution progress; and as a field for writing debug information upon failure. This allows
the attackers to monitor the status of and debug problems with the injector as it runs.

ICS-CERT MAR-17-352-01 Page 4 of 12

This shellcode component follows the general execution path shown in the flow chart below.
During each cycle, the program runs and branches based on the control value stored in the
control field. It begins by waiting a number of cycles based on the counter portion of the control
field then proceeds to the later steps. The next two steps perform checks using a system call,
matching an output value against an expected constant. The fourth step performs a similar system
call check and then, if that check passes, copies the payload into memory, changes a function
pointer to the address of the copied payload, and returns.

Inject.bin Step #1

Step #2

Step #3

Step #4

While Counter > 0
Decrement Counter

Syscall check
iteration #1

Syscall check
iteration #2

Syscall check
iteration #3

Failure

Check control
field

Match?

Yes

Match?

Yes

Match?

End

Inject payload

Yes

No

At the time of writing, research is ongoing to determine exactly what effects the intermediate
system call checks and/or actions produce upon the device.

Once the injector has finished running, it will have modified a function pointer that is used in
processing a specific network command (“get main processor diagnostic data”) such that, when
that command is received, the payload is executed first prior to normal processing.

The second component of the malicious program—the payload, imain.bin—is designed to take
a TriStation protocol “get main processor diagnostic data” command, look for a specially crafted
packet body, and perform custom actions on demand. It is able to read and write memory on the
safety controller and execute code at an arbitrary address within the firmware. In addition, if the

ICS-CERT MAR-17-352-01 Page 5 of 12

memory address it writes to is within the firmware region, it disables address translation,7 writes
the code at the provided address, flushes the instruction cache, and re-enables address translation.
Based on our understanding of the Triconex device, this allows the malware to make changes to
the running firmware; however, it appears these changes will be persistent only in memory.

IMPLICATIONS

Although by itself HatMan does not do anything catastrophic—safety systems do not directly
control the process, so a degraded safety system will not cause a correctly functioning process to
misbehave—it could be very damaging when combined with malware that impacts the process in
tandem. Were both to be degraded simultaneously, physical harm could be effected on persons,
property, or the environment.

It is safe to say that while HatMan would be a valuable tool for ICS reconnaissance, it is likely
designed to degrade industrial processes or worse. Overall, the construction of the different
components would indicate a significant knowledge about ICS environments—specifically
Triconex controllers—and an extended development lifecycle to refine such an advanced attack.

DETECTION

NCCIC is working with Schneider Electric to develop an effective method for both detection and
mitigation of the known samples in the short term. Schneider Electric is evaluating the
possibility of longer-term strategies for detection and mitigation as well.

In addition, a YARA rule that matches the three binary components—trilog.exe, inject.bin,
and imain.bin—is included as an appendix. This is not necessarily a reliable method for
detection, as the files may or may not be present on any workstation, and such a rule cannot be
used on a Triconex controller itself; however, it could be useful for detection with agent-based
detection systems or for scanning for artifacts.

7 This is also known as putting the processor into “real mode”.

ICS-CERT MAR-17-352-01 Page 6 of 12

MITIGATIONS

There are a number of possible mitigations that can reduce the chance of Triconex devices being
compromised. Currently, none of these are complete solutions to the problem, as none will
prevent the malware under all circumstances. The following are possible mitigations:

• Ensure Triconex devices connect only to networks required for their proper function.
If possible, remove Triconex devices from any networks to which they do not need a
persistent connection; however, if historians or other applications that rely on real-time
information from safety controllers are needed, this might not be possible.

• Only switch the key to “PROGRAM” when necessary.
When a Triconex device has its key set to “RUN” or “REMOTE”, it is unable to be
programmed; thus, only moving the key to “PROGRAM” whenever the device must be
programmed will reduce the likelihood that it can be compromised. That being said, many
processes may be in flux due to changes in the environment, so safety systems may need to
be reprogrammed with some frequency; thus, it is rarely possible to never move the key from
“RUN”. This is not only a way to reduce the chances of being infected, but also best practice.

• Avoid connecting TriStation workstations to a larger network, avoid using removable media
to transfer programs, and follow best practices for updating workstations.
The malicious program must be transmitted to a machine—likely a TriStation workstation—
that is connected to the same network as the Triconex device. These machines must be
treated with caution to prevent malware spreading to them. If there is no path in, the malware
we analyzed cannot jump through a workstation onto the safety PLC. This recommendation
follows the best practices DHS NCCIC/ICS-CERT has previously detailed for control
systems workstations in the “Defense in Depth” document.8 Any other guidance provided in
this document should also be considered.

8 This document may be found on the ICS-CERT web site.

ICS-CERT MAR-17-352-01 Page 7 of 12

https://ics-cert.us-cert.gov/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf

Schneider Electric has published a security notification (SEVD-2017-347-01)9 that recommends
a variety of mitigations to decrease the chances of infection that are more tailored toward their
specific systems. Several key points are mentioned here:

• Safety systems must always be deployed on isolated networks using zones and conduits as
defined in IEC-62443;

• Physical controls should be in place so no unauthorized person has access to the plant,
equipment rooms, safety controllers, safety peripheral equipment or the safety network;

• All controllers should reside in locked cabinets;

• All TriStation terminals (Triconex programming software) should be kept in locked
cabinets and should never be connected to any network other than the safety network;

• Operator stations should be configured to display an alarm whenever the Tricon keyswitch
is in the “Program Mode” with the key removed and secured; and

• Enhanced security features in TriStation, as well as the Triconex communication modules,
should be enabled.

9. https://www.schneider-electric.com/en/download/document/SEVD-2017-347-01/

ICS-CERT MAR-17-352-01 Page 8 of 12

https://www.schneider-electric.com/en/download/document/SEVD-2017-347-01/

APPENDIX: YARA RULES

The following is a YARA rule that matches the binary components of the HatMan malware. The
YARA rule is available at: https://ics-cert.us-cert.gov/sites/default/files/file attach/MAR-17-352-
01.yara
/*
* DESCRIPTION: YARA rules to match the known binary components of the HatMan
* malware targeting Triconex safety controllers. Any matching
* components should hit using the "hatman" rule in addition to a
* more specific "hatman_*" rule.
* AUTHOR: DHS/NCCIC/ICS-CERT
*/

/* Globally only look at small files. */

private global rule hatman_filesize : hatman {
condition:

filesize < 100KB
}

/* Private rules that are used at the end in the public rules. */

private rule hatman_setstatus : hatman {
strings:

$preset = { 80 00 40 3c 00 00 62 80 40 00 80 3c 40 20 03 7c
?? ?? 82 40 04 00 62 80 60 00 80 3c 40 20 03 7c
?? ?? 82 40 ?? ?? 42 38 }

condition:
$preset

}
private rule hatman_memcpy : hatman {

strings:
$memcpy_be = { 7c a9 03 a6 38 84 ff ff 38 63 ff ff 8c a4 00 01

9c a3 00 01 42 00 ff f8 4e 80 00 20 }
$memcpy_le = { a6 03 a9 7c ff ff 84 38 ff ff 63 38 01 00 a4 8c

01 00 a3 9c f8 ff 00 42 20 00 80 4e }
condition:

$memcpy_be or $memcpy_le
}

private rule hatman_dividers : hatman {
strings:

ICS-CERT MAR-17-352-01 Page 9 of 12

https://ics-cert.us-cert.gov/sites/default/files/file_attach/MAR-17-352-01.yara
https://ics-cert.us-cert.gov/sites/default/files/file_attach/ICS-ALERT-14-281-01E.yara

$div1 = { 9a 78 56 00 }
$div2 = { 34 12 00 00 }

condition:
$div1 and $div2

}
private rule hatman_nullsub : hatman {

strings:
$nullsub = { ff ff 60 38 02 00 00 44 20 00 80 4e }

condition:
$nullsub

}
private rule hatman_origaddr : hatman {

strings:
$oaddr_be = { 3c 60 00 03 60 63 96 f4 4e 80 00 20 }
$oaddr_le = { 03 00 60 3c f4 96 63 60 20 00 80 4e }

condition:
$oaddr_be or $oaddr_le

}
private rule hatman_origcode : hatman {

strings:
$ocode_be = { 3c 00 00 03 60 00 a0 b0 7c 09 03 a6 4e 80 04 20 }
$ocode_le = { 03 00 00 3c b0 a0 00 60 a6 03 09 7c 20 04 80 4e }

condition:
$ocode_be or $ocode_le

}
private rule hatman_mftmsr : hatman {

strings:
$mfmsr_be = { 7c 63 00 a6 }
$mfmsr_le = { a6 00 63 7c }
$mtmsr_be = { 7c 63 01 24 }
$mtmsr_le = { 24 01 63 7c }

condition:
($mfmsr_be and $mtmsr_be) or ($mfmsr_le and $mtmsr_le)

}
private rule hatman_loadoff : hatman {

strings:
$loadoff_be = { 80 60 00 04 48 00 ?? ?? 70 60 ff ff 28 00 00 00

40 82 ?? ?? 28 03 00 00 41 82 ?? ?? }
$loadoff_le = { 04 00 60 80 ?? ?? 00 48 ff ff 60 70 00 00 00 28

?? ?? 82 40 00 00 03 28 ?? ?? 82 41 }

condition:
$loadoff_be or $loadoff_le

}

ICS-CERT MAR-17-352-01 Page 10 of 12

private rule hatman_injector_int : hatman {
condition:

hatman_memcpy and hatman_origaddr and hatman_loadoff
}
private rule hatman_payload_int : hatman {

condition:
hatman_memcpy and hatman_origcode and hatman_mftmsr

}

/* Actual public rules to match using the private rules. */

rule hatman_compiled_python : hatman {
condition:

hatman_nullsub and hatman_setstatus and hatman_dividers
}
rule hatman_injector : hatman {

condition:
hatman_injector_int and not hatman_payload_int

}
rule hatman_payload : hatman {

condition:
hatman_payload_int and not hatman_injector_int

}
rule hatman_combined : hatman {

condition:
hatman_injector_int and hatman_payload_int and hatman_dividers

}
rule hatman : hatman {

meta:
author = "DHS/NCCIC/ICS-CERT"
description = "Matches the known samples of the HatMan malware."

condition:
hatman_compiled_python or hatman_injector or hatman_payload

or hatman_combined
}

ICS-CERT MAR-17-352-01 Page 11 of 12

ICS-CERT CONTACT

For any questions related to this report, please contact NCCIC Customer Service at:

U.S. Toll Free: (888) 282-0870
Email: ncciccustomerservice@hq.dhs.gov

Click this link for information on industrial control systems security information and incident
reporting.

ICS-CERT continuously strives to improve its products and services. You can help by answering
a short series of questions about this product on the Feedback page.

ICS-CERT MAR-17-352-01 Page 12 of 12

mailto:ncciccustomerservice@hq.dhs.gov
https://ics-cert.us-cert.gov/Report-Incident?
https://ics-cert.us-cert.gov/Report-Incident?
https://www.us-cert.gov/forms/feedback

