DETECTING ZERO-DAY AND TARGETED ATTACKS AGAINST ICS

DINA HADZIOSMANOVIC
DAMIANO BOLZONI
DISTRIBUTED AND EMBEDDED SECURITY GROUP
THE CONTEXT

- Hermes, Castor and Midas
 - 3 projects sponsored by the (former) Dutch Ministry of Internal affairs

MOTIVATIONS: current countermeasures cannot detect the latest cyber threats against industrial control systems
 - Stuxnet
 - Vulnerabilities disclosed by “independent researchers”
 - Project Basecamp

GOALS: enhance current approaches and develop new techniques
 - Using data mining and anomaly detection techniques
PARTNERS

ABB
brabantWater
FOX-IT
Security Matters
UNIVERSITEIT TWENTE
THE CYBER SECURITY PROBLEM

0-day and targeted attacks

- STRATEGIC INFORMATION WARFARE
 - Major economic gain
 - Cyber terrorism
 - Asymmetric warfare

- DIREC TED CYBER ATTACKS – STRUCTURED HACKERS
 - Direct and targeted money gain
 - Social/political activism
 - Vengeance

- GENERAL CYBER ATTACKS – LESS STRUCTURED
 - Notoriety and fame
 - Hacking economy

- IMPACT
 - HIGH
 - LOW

- LIKELIHOOD
 - HIGH
 - LOW

- GRP I
 - Mainstream
 - (Ex) Employees

- GRP II
 - Organized crime
 - Competitors
 - Activists

- GRP III
 - Nation states
 - High-level Terrorism

Probes
System compromise
System control
Connection-based DDoS
Worm
Disruption
Direct Corruption
L7 DDoS
Poisoned Data
Exploitation of 0-day vulnerabilities (Stuxnet)
UNIVERSITY OF TWENTE.

HERMES
HOST-BASED EVENT MINING IN SCADA SYSTEMS
THE PROBLEM

➢ SCADA systems log thousands of events per day
 - User/system activities

➢ Logs are hardly analyzed/processed by operators
 - Too much work
 - Lack of skills

➢ A good deal of information is lost…
THREATS AND CURRENT SECURITY TOOLS

- NIDS/HIDS mainly address *system-related* threats
 - Buffer overflows
 - Virus/Worms

- What about:
 - Authorized users that make mistakes
 - Unauthorized users that gain enough privileges and perform malicious actions

- We call those “process-related threats”
 - Leverage vulnerabilities in the application logic
 - A higher semantic understanding of inputs is needed for detection
DETECTING PROCESS RELATED THREATS

- System logs provide a complete overview of the processes
 - We look for *rare* log entries

- Malicious/anomalous events are supposed to happen *rarely*

- Use visualization to ease the task of IT (security) operators
 - Support operators with little security skills
LOG NORMALIZATION

➢ A typical log entry

➢ Each log entry has several attributes
 - Some are not relevant (“locale”)
 - Some are incomplete (“user account”)
 - Some require pre-processing (“timestamp” → working shift)

➢ Together with process engineers we selected the most “interesting” ones
 - Timestamp (Working shift), SCADA node, Object_path, Type of event, Aspect of event and User account
EXPERIMENTS

- We plot a graphical representation of the events
 - 14 days of logs, ~100K events
- No intrusion had been reported during the chosen days
 - But…

https://zeus.tsl.utwente.nl/wiki/hcm/Hermes-Deliverable-Software
CASTOR
CONTROLLING ACCESS TO SCADA NETWORKED SYSTEMS
THE PROBLEM

- At some point in time, despite the organization’s policies, an unauthorized device is connected to the network
 - A technician that needs to run some maintenance, perhaps with a malware-infected laptop

- A disgruntled employee could use his knowledge and trust level to plant a malware into some systems (e.g., an HMI client)
APPROACH

➢ Approach

❑ Add seamlessly “smart” ACLs to current installations
 o Automatically build a model of the network that describes communication patterns and protocols used among hosts
 o For some protocols, enforce function codes normally used

❑ Communications with an abnormal pattern are flagged as anomalous
BENCHMARKS IN REAL-LIFE ENVIRONMENTS
CURRENT STATUS

➢ The system has been deployed in a real-life production site
 ❑ MMS, OPC and SMB
 ❑ Training for **5 minutes**, 2 false alerts over 7 days of testing

➢ Then we re-deployed it in a testing environment
 ❑ This environment was supposed to be a copy of the production site, actually it wasn’t → **the system spotted the inconsistency**
 ❑ We connected an unauthorized device → **detected**
 ❑ We simulated a hacked authorized device using a different set of protocols/function codes → **detected**
MIDAS
INTRUSION DETECTION FOR SCADA SYSTEMS
PROBLEM

- Current NIDS are mainly based on signatures
 - Blacklisting
 - Cannot detect 0-day exploitations, because they lack the proper signatures
 - Some implementations use heuristics to improve detection, but with little success

- Anomaly detection (whitelisting) has been advocated as the definite solution for years
 - So far, only flow-based anomaly detection systems managed to penetrate the market \(\rightarrow \) cannot detect in general a data injection exploit
 - Too many false alerts in real-life environments
APPREACH

- Include a (partial) specification of the protocol to monitor
 - Lower false alerts, increases detection capabilities

- If a network message is not protocol-compliant an alert is raised

- The detection engine “learns” normal values for all of the protocol message fields
 - Numbers/Lengths: enumerations, ranges (for instance, 0 < x < 100)
 - Strings: regular expressions
 - Binary buffers: byte frequency distribution

- Messages with abnormal field values are flagged as attacks
FIRST BENCHMARKS IN CONTROLLED ENVIRONMENT
CURRENT STATUS

- We use data sets collected at four production sites from project partners
 - Modbus tests

- Detects the RPC exploits used by Stuxnet
 - The system detects that the RPC functions exploited have not been seen before
 - We then simulated the use of the “NetprPathCompare” function (MS-08-067), and re-run the exploit -(too much data is sent compared to normal usage)

- Tested against Wurldtech’s Achilles
 - Modbus → all tests cleared with success
SUMMARY

- HERMES – detect legitimate but undesirable commands on the application level
- CASTOR - monitor your plant and derive models of communication
- MIDAS – monitor message fields and look for anomalous packets
QUESTIONS

?